Commissioning a Motor for use with EPC motor drives that operate using Microchip motorBench[®] Development Suite and EPC9147A-Rev.2.1

Revision 11.0

OVERVIEW OF THE PROCESS

- Background
- Equipment needed
- Measuring the motor parameters
- Inputting the motor parameters into Microchip's motorBench® Development Suite
- Generating the control firmware:
 - Compiling
 - Build
 - Flash
- Operating the motor drive system

CONTROLLER BOARD BACKGROUND

- Process is for_EPC9147A Only (A), equipped with MA330031-2
 PIM (B) with dsPIC33EP256MC506 (C) and that uses Microchip[®]
- motorBench[®] Development Suite
- EPC9147A (Provided with motor drive KIT's)
 - Pre-programmed with a sensor-less motor control algorithm for a specific motor Teknic_M-3411P-LN-08D (D)

MOTOR CONTROL BACKGROUND

- For sensor-less motor control algorithms:
- Only the three motor terminals connect to the inverter board
- Depends on specific motor parameters (a model of the motor is used for control)
- New motor parameters **must be programmed before** operating a different motor

EQUIPMENT NEEDS, MOTOR ACCESS

Motor Access

- Direct access to the motor terminals
 - Motor terminal must be disconnected from inverter board
- Direct access to the motor shaft
 - Need to turn it by hand

Equipment

- LCR meter
 - To measure line-to-line resistance and inductance
- Oscilloscope
 - To measure line-to-line Back EMF (BEMF)

A -///-

B -000

MEASURING THE MOTOR PARAMETERS

Motor Parameters Needed

- Terminal resistance (A)
 - Line-to-line
- Terminal inductance (B)
- – Line-to-line
- Pole pairs (C)
- Back EMF constant (D)

Identification of Motor Terminals

Example for Teknic Model M-3411P-LN-08D

Line-to-Line Resistance Measurement

- 1. Disconnect all three motor terminals from inverter
- 2. Connect **only two motor** terminals to an ohm-meter, third terminal is left floating
- 3. Measure the line-to-line resistance
- 4. 4-wire resistance measurement is more accurate (if available)

This motor has $\mathbf{R}_{L-L} = \mathbf{800} \ \mathbf{m}\Omega$ line to line resistance (100 m Ω due to LCR meter leads)

Line-to-Line Inductance Measurement

- 1. Disconnect all three motor terminals from inverter
- 2. Connect **only two motor** terminals to the LCR-meter, third terminal is left floating
- 3. Measure the line-to-line inductance
- 4. **Note** long leads will add inductance. Twisting the leads will help reduce inductance. More important for low inductance motors.
- 5. For motors with **varying inductance with shaft angle**, find the minimum and the maximum inductance values, by measuring at different angles.
- 6. Determine the average inductance:

$$L_{avg} = \frac{L_{min} + L_{max}}{2}$$

- 7. For the example: Rounded 932 μ H to 1 mH.
- 8. Use the same value for L_d and L_a

This motor has $L_{L-L} = 932 \mu H$ line to line inductance (LCR meter leads may also have inductance, use autozero function if available)

Determination of the Pole Pairs Number

- 1. Disconnect all three motor terminals from inverter
- 2. Short **any two (A) motor** terminals, third terminal is left floating **(B)**
- 3. Gently and slowly hand spin the motor shaft (C) and make one mechanical turn only
 - Count the notches/steps/jumps that you feel with as the motor axle is rotated = motor poles number
- 4. Divide the **motor poles number** by 2 = **Pole Pairs number (pp)**

This motor has **pp**= **4 pole pairs**

Line-to-line BEMF constant Measurement

- 1. Disconnect all three motor terminals from inverter
- 2. Connect **one** of the **motor** terminals to an oscilloscope probe **ground** lead and the **other motor** terminal to the **tip**. The third motor terminal is left floating
- 3. Hand **spin** the motor shaft **(A)** and record the voltage signal on the oscilloscope.
- (B) Measure the peak-to-peak voltage of one-half sinusoid (details on next slide)
- (C) Measure the time period between the same two peaks (details next slide)

В

Line-to-line BEMF Constant Calculation

- $\mathbf{A_{pp}} = \text{Half-sinusoid peak-to-peak voltage amplitude}$ $(A_{pp} = 15.836 V_{pp})$
- T_{half} = Half sinusoid peak-to-peak period (T_{half} = 13.92 ms)
- **pp** = Pole Pairs (pp = 4)
- Calculate BEMF (for 1 krpm):
 - Units: A_{pp} [V], T_{half} [s]

K_e = 10.096 Vrms/krpm for example motor (will use 10.2 in motorBench)

INSTALLING MICROCHIP'S motorBench® DEVELOPMENT SUITE AND INPUTTING THE MOTOR DRIVE AND MOTOR PARAMETERS INTO A PROJECT

Install motorBench® development suite

Refer to Microchip website to install following software, follow exactly the steps indicated in Microchip website

- MPLAB X IDE (i.e. 5.45 version), make sure to install the recommended updates (A).
- 2. Microchip code configurator plugin (B)
- 3. Microchip motorBench plugin 2.35 (C)
- 4. MCLV-2 project to start (or EPC project for EPC914xKIT) called **sample-mb-33ep256mc506-mclv2.X**

 Image: MicRochip
 Products
 Solutions
 Tools and Software
 Support
 Education
 About
 Order Now
 Q
 Q
 R

 Solutions / Motor Control and Drive / motorBench® Development Suite

 motorBench® Development Suite

- A https://www.microchip.com/en-us/development-tools-toolsand-software/mplab-x-ide#
- **B** https://www.microchip.com/en-us/development-tools-toolsand-software/embedded-software-center/mplab-codeconfigurator#Downloads
- **C** https://www.microchip.com/en-us/solutions/motor-controland-drive/motorbench-development-suite

Select Sample Project

Unzip the Sample projects

 We will be working with this project folder's contents (A) which is specific to the MA330031-2 PIM with dsPIC33EP256MC506 and that uses Microchip[®]

	sample-mb-33ck64mc105-mchv2.X	File folder
	sample-mb-33ck64mc105-mclv2.X	File folder
	sample-mb-33ck64mp105-mchv2.X	File folder
	sample-mb-33ck64mp105-mclv2.X	File folder
	sample-mb-33ck256mp508-mchv2.X	File folder
	sample-mb-33ck256mp508-mclv2.X	File folder
	sample-mb-33ep256mc506-mchv2.X	File folder
A — [sample-mb-33ep256mc506-mclv2.X	File folder

Launch motorBench® development suite

- Start MPLAB X IDE
- Open sample project
- Click on MCC icon (A)
- Click on motorBench Project resource (B)
 - If motorBench is not visible, check Device Resources (C)

CONFIGURE motorBench® TO THE INVERTER BOARD PICK ONE OF THE FOLLOWING OPTIONS

motorBench Configure/Board Specific Parameters for the Power Board EPC9145

Make sure that all parameters are set as shown

motorBench® Development Suite

Setup						
Algorithm: FC Mechanical System: Co	DC onstant Lo	oad				
figure Board						
e ID	mclv2					
Name	EPC914	45				
tomize Board Part Number	DM330	0021-2				
PIM Part Number	dspic33	3ep256mc506-exte				
ed. Processor Clock	70.0×1	06	Hz			
Sampling Time Current	50.0×1	0-*	s	-		
Sampling Time Velocity	1.00×1	0-3	5	*		
▼ PWM						
Switching frequency m	ninimum	1000		H	z	*
Switching frequency m	naximum	100×10 ³		H	z	*
Switching frequency		100×10 ³		H	z	*
Deadtime minimum		50.0×10 ⁻⁹		s		٣
Deadtime maximum		6.00×10 ⁻⁶		s		*
Deadtime		50.0×10**		5		+

45						Para Para		
Voltage S	ource		0	IEPL		•	• week	arath (
Output	48.0		V	-	_		_	
Max Current	10.0		A -					
• Inverter								
Maximum d	uty cycle	95.0			%			
Minimum d	uty cycle	0.500			%			
Maximum D	C link voltage	72.0	V	-				
Minimum D	C link voltage	16.0	V	*				
Maximum c	urrent	30.0			A	*		
Voltage S	ensor							
Full scale rea	ading	81.5			V	-		
Equivalent t	ime constant	188×10 ⁻⁶	s	-				
Current S	ensor							ĺ
Full scale reading Equivalent time constant		82.5 1.50×10 ⁻⁶			A	-		
					s	*		
Compensati	on							
Kaa 1			Kab	0				
Kba 0			Kbb	1				

motorBench Configure/Board Specific Parameters for the Power Board EPC9146

• Make sure that all parameters are set as shown. Note: Processor clock does not need to change

Ready to Generate	Algorithm: FOC Mechanical System: Con	: Istant Loa	ad							
Configure	▼ Board							- 0	MCLV	-2
 Tune 	ID	mclv2								
🔧 Customize	Name	EPC9146 Development Bc								
legistered.	Board Part Number	DM330021-2								
	PIM Part Number	dspic33	3ep256mc506-exte							
	Processor Clock	70.0×1	0 ⁶	Hz						
	Sampling Time Current 50.	50.0×1	0 ⁻⁶	s	-					
	Sampling Time Velocity	1.00×1	0 ⁻³	s	-					
	▼ PWM									
	Switching frequency m	inimum	1000			Hz	•			
	Switching frequency m	aximum	100×10 ³			Hz	-			
	Switching frequency	100×10 ³			Ì	Hz	-			
	Deadtime minimum		21.0×10 ⁻⁹		i	s	•			
	Deadtime maximum		6.00×10 ⁻⁶		j	s	•			
	Deadtime		21.0×10 ⁻⁹			s	-			

Voltage So	urce						()	100 Marca	••• ••
Output	48.0			v	0	Â	Enc.A C	a Önet i	
Max Current	12.0			А	•				
 Inverter 									Ĩ
Maximum duty cycle		95.0			%				
Minimum dut	y cycle	0.500			%				
Maximum DC	link voltage	72.0					•		
Minimum DC link voltage		16.0				V	-		
Maximum cur	rent	22.0			A	-			
▼ Voltage Se	nsor								ĺ
Full scale reac	ling	81.5			V	•			
Equivalent tim	ne constant	188×10 ⁻⁶			s	•			
 Current Se 	nsor								ĺ
Full scale rea	ding	22.0				A	•		
Equivalent tir	ne constant	1.50×10	-6			s	-		
Compensatio	n								
Kaa 1			Kab	0					
14			KEE	4					1

CONFIGURE motorBench® TO THE MOTOR

motorBench Configure/PMSM Motor Parameters

Have an existing motor config file *.xml

- click on "Import Motor" (A)
- Xml file available on EPC website for specific motor

OR

Need a new motor config file *.xml

- click on "Export Motor" (B)
- This will export a blank *.xml motor file, which you can then import using the "Import Motor" button
- Make sure that all parameters are set as shown below.
- Parameters are not explicit to board used.
- Used $L_d = L_q = 1$ mH in this example, despite measuring 932 μ H.

create a new motor, import a	an existing motor, make chan	ges, and	l exp	ort	- Electrical a	nd Machanical Parameters		
 Identification 					+ ciectrical a		(A _11_1)	
ID	Teknic			R	Parameters	Active Values	Use all	Meas
Motor Name	EPC Demo standard mot	c		**L-L	Rs	0.800	$\left(\leftarrow\right)$	0
Company Name	Teknic			L	Ld	1.00	\leftarrow	0
Part Number	M-3411P-LN-08D				Lq	1.00	\leftarrow	0
Additional Info	rshunt=1.0mohm			K _e from BEMF —	Ke	10.2	\leftarrow	0
MicrochipDIRECT Part Numb	ber			_	В	301×10 ⁻⁶	\leftarrow	0
 Nameplate 					Tf	0.0746	\leftarrow	0
Rated Current : Continuous	14.0	A	-		J	867×10 ⁻⁶	\leftarrow	0
Rated Current : Peak	14.0	A	*					
Rated Voltage	48.0	۷	-					
Nominal Speed	1300.0	RPM	*					
Maximum Speed	1300.0	RPM	-					

CONFIGURE motorBench® TO THE CONTROLLER

motorBench Configure/Controller Parameters

Make sure that all parameters are set as shown

• Fine tune speed loop dynamics in subsequent step (by modifying the C code)

Easy Setup			
Ready to Generate	Status		
	Current Controller		
Configure	Phase Margin	80.0	
	1*	60°	1204
/ Tune	PI Phase Lag at Crossover	45.0	
	0*	45*	90*
Customize	Valasita Castrallas		
Registered.	velocity Controller		_
	Phase Margin	85.0	
	1.	60"	120*
	PI Phase Lag at Crossover	1.0	
	1"	45°	90°

motorBench Customize Parameters 1

Make sure that all parameters are set as shown

Ensures FOC sensor-less algorithm is set and correctly configured

ුයි Easy Setup	
Ready to Generate	 Show advanced parameters Show parameter descriptions
🗢 Configure	✓ Estimators Primary estimator ● AN1292 PLL
🖊 Tune	AN1292 phase-locked-loop ► Parameters ○ Quadrature encoder
🔧 Customize	Parameters Apple tracking PLL-based sensoriers estimator
	✓ Additional active estimators ✓ AN1292 PLL O Primary estimator AN1292 phase-locked-loop Quadrature encoder Incremental encoder — uses tracking loop for velocity estimator ATPLL Angle-tracking PLL-based sensorless estimator
	▼ Operating parameters Minimum velocity ω_1 20 Hz electrical = 300.00 RPM Minimum operating velocity, as an electrical frequency Max velocity ω_{maxcmd} 1.25 × ω_{nom} = 1625.0 RPM Maximum velocity command, as a ratio of nominal motor velocity. (Note: this will be limited so it is less than the maximum motor velocity rating and the full-scale velocity.) Full-scale velocity ω_u 1.5 × ω_{nom} = 1950.0 RPM Full-scale velocity ω_u 1.5 × ω_{nom} = 1950.0 RPM Full-scale velocity ω_u 1.5 × ω_{nom} = 1950.0 RPM Full-scale velocity ε_u 1.5 × ω_{nom} = 1950.0 RPM
	Determines when to utilize a motor model that includes rotor saliency ($L_d \neq L_q$); these calculations take effect when $\xi = L_q / L_d \ge \xi_1$.

motorBench Customize Parameters 1 (continued)

	L	_q /L _d		= 1.0000
Ratio of q-axis inductand	e to d-axis	inductance		
▼ Coastdown				
Velocity threshold	k _c 0	.05	× w _{max}	= 65.000 RPM
Determines expected vel maximum operating velo	locity at wh ocity ω _{max} .	ich waiting is no	longer required befo	ore restarting. This is normalized to the
Time	1	.2	× t _{c1}	= 1.4195 s
Coastdown time, normal	izad to pati	ural coastdown ti	$mot_{I} = -(I/B)$	$k_c \omega_{max} + \omega_{fr}$ where
coastoown time, normai	ized to hat	arai coastoown ti	$u_{c1} = -(J/D)$	$\omega_{max} + \omega_{fr}$ where
$\omega_{fr} = T_{fr}/B$				
A WARNING: Coastdow	vn time is t	ne delay time to a	allow the motor to c	come to a stop before a restart is allowe
Reducing the coastdown	time below	v 1.0 × t _{c1} for lar	ge inertia motors ma	ay cause large motor currents to be
generated from the mot	or back-em	t. Excessive curr	ent flow may dama	age components such as sense resisto
or power transistors, w	nich may p	ose a risk of inj	ury or property da	mage.
▼ Slew rate	_		_	
Max acceleration of	X+ 0	.5	× α_{max}	= 8.7815 kRPM/s
Determines maximum ac	celeration	n motoring quad	Irants. This is norma	lized to the maximum expected
acceleration amax, taking	g into accou	int friction torque	and maximum curr	rent.
Max deceleration (α_ 1		×αn	= 0.92584 kRPM/s
				- 0.52504 KKI 10/5
Determines maximum ad	celeration i	n generating gua	drants. This is norm	alized to natural deceleration α_n at
Determines maximum ac minimum operating velo	celeration i	in generating qua ere $lpha_n=(T_{fr}$ -	adrants. This is norm $(+ B\omega_1)/J$.	alized to natural deceleration α_n at
Determines maximum ac minimum operating velo A WARNING: Decelerat	celeration i city ω ₁ , wh tion faster t	in generating qua ere $lpha_n=(T_{fr}+$ han 1.0 × $lpha_n$ may	adrants. This is norm + $B\omega_1)/J$.	alized to natural deceleration α_n at back onto the DC link, requiring either
Determines maximum ac minimum operating velo WARNING: Decelerat energy storage or dissipi	celeration i ocity ω ₁ , wh tion faster t ation. Failu	in generating qua ere $lpha_n = (T_{fr} - t_{fr})$ han 1.0 × $lpha_n$ may re to manage re	adrants. This is norm + $B\omega_1)/J$. / regenerate energy generation energy	back onto the DC link, requiring either may cause excessive DC link voltage
Determines maximum ac minimum operating velo WARNING: Decelerat energy storage or dissipa and may damage comp	cceleration i ocity ω ₁ , wh tion faster t ation. Failu conents co	in generating qua ere $\alpha_n = (T_{fr} -$ han 1.0 × α_n may re to manage re nnected to the D	adrants. This is norm + $B\omega_1$)/J. / regenerate energy generation energy OC link, such as elect	back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo & WARNING: Decelerat energy storage or dissipi and may damage comp transistors, which may	cceleration i ocity ω ₁ , wh tion faster t ation. Failu ponents con pose a risk	in generating qua ere $\alpha_n = (T_{fr} - t_{fr})$ han 1.0 × α_n may re to manage re- nnected to the E to finjury or pro-	drants. This is norm + $B\omega_1$)/ J . y regenerate energy generation energy DC link, such as elector perty damage.	balized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo & WARNING: Decelerat energy storage or dissipi and may damage comp transistors, which may	cceleration i ocity ω ₁ , wh tion faster t ation. Failu ponents co pose a risk	In generating quadratic q	adrants. This is norm + $B\omega_1)/J$. y regenerate energy generation energy DC link, such as elec- perty damage.	balized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo & WARNING: Decelerat energy storage or dissip and may damage comp transistors, which may	cceleration i ocity ω ₁ , wh tion faster t ation. Failu ponents co pose a risk	In generating qua ere $\alpha_n = (T_{fr} - t_{fr})$ han 1.0 × α_n may re to manage re nnected to the E of injury or pro	adrants. This is norm $+ B\omega_1)/J$. yregenerate energy generation energy DC link, such as elector perty damage.	balized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo & WARNING: Decelerat energy storage or dissipi and may damage comp transistors, which may Flux control Flux control	cceleration i ocity ω ₁ , wh tion faster t ation. Failu ponents co pose a risk	In generating qua ere $\alpha_n = (T_{fr} - t_{fr})$ han 1.0 × α_n may re to manage re nnected to the E of injury or pro	adrants. This is norm $+ B\omega_1)/J$. yregenerate energy generation energy DC link, such as electory perty damage.	balized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo & WARNING: Decelerat energy storage or dissip and may damage comp transistors, which may Flux control Flux control None	cceleration icity ω ₁ , wh tion faster t ation. Failu ponents co pose a risk	In generating que ere $\alpha_n = (T_{fr} \cdot han 1.0 \times \alpha_n mayre to manage rennected to the Eof injury or pro$	adrants. This is norm $+ B\omega_1)/J$. yregenerate energy generation energy DC link, such as electory perty damage.	balized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo \triangle WARNING: Decelerat energy storage or dissip- and may damage comp transistors, which may Flux control Flux control None No flux control ($I_d = 0$)	cceleration incity ω ₁ , wh tion faster t ation. Failu ponents co pose a risk	In generating que ere $\alpha_n = (T_{fr} \cdot han 1.0 \times \alpha_n mayre to manage rennected to the Eof injury or pro$	solution of the second	balized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo A WARNING: Deceleral energy storage or dissipa and may damage comp transistors, which may Flux control Flux control None None No flux control ($I_d = 0$ C Equation-based	cceleration i ccity ω_1 , wh tion faster t ation. Failu ponents co pose a risk	In generating que ere $\alpha_n = (T_{fr} \cdot han 1.0 \times \alpha_n mayre to manage rennected to the Eof injury or pro$	solution of the second	alized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo \triangle WARNING: Decelerat energy storage or dissip- and may damage comp transistors, which may Flux control Flux control None No flux control ($I_d = 0$) Equation-based flux cont Equation-based flux cont Equation-babased flux cont Equation-based flux co	cceleration i icity ω1, wh tion faster t ation. Failu ponents cou pose a risk	In generating que ere $\alpha_n = (T_{fr} - t_{han}) - t_{han} = (T_{fr} - t_{han}) - t_{han} = t_{h$	Marants. This is norm + $B\omega_1$)/J. / regenerate energy generation energy DC link, such as elec pperty damage.	alized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo \triangle WARNING: Decelerat energy storage or dissip- and may damage comp transistors, which may Flux control Flux control Flux control None No flux control ($I_d = 0$) Equation-based flux control Equation-based flux control	cceleration in incity ω ₁ , wh tion faster t ation. Failu oonents co pose a risk	In generating que ere $\alpha_n = (T_{fr} - t_{han}) - t_{han} = (T_{fr} - t_{han}) - t_{han} = t_{h$	$+ B\omega_1)/J.$ rregenerate energy generation energy JC link, such as elec operty damage.	balized to natural deceleration α _n at back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo \triangle WARNING: Deceleral energy storage or dissip- and may damage comp transistors, which may Flux control Flux control Flux control Flux control ($I_d = 0$) No flux control ($I_d = 0$) Equation-based Equation-based flux control Dead-time compension	cceleration incity ω ₁ , wh tion faster t ation. Failu sonents co pose a risk pose a risk pose a risk pose a risk pose a risk	In generating que ere $\alpha_n = (T_{fr} - t_{han}) - t_{han} = (T_{fr} - t_{han}) - t_{han} = t_{h$	IMTPA	back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating yeld \triangle WARNING: Deceleral energy storage or dissip- and may damage comp transistors, which may Flux control Flux control Flux control None No flux control ($I_d = 0$) Equation-based Equation-based flux control Dead-time compension Method	cceleration i icity ω ₁ , wh tion faster t ation. Failu sonents co pose a risk pose a risk pose a risk pose a risk pose a risk	In generating que ere $\alpha_n = (T_{fr} - t_{han}) + $	I MTPA	back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating yeld \triangle WARNING: Deceleral energy storage or dissip- and may damage comp transistors, which may Flux control Flux control Flux control method Flux control ($I_d = 0$) Equation-based Equation-based flux com Dead-time compension Method None	cceleration incity ω ₁ , wh tion faster t ation. Failu sonents co pose a risk pose a risk trol with flu sation	In generating que ere $\alpha_n = (T_{fr} - t_{han}) + $		back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo \triangle WARNING: Deceleral energy storage or dissip- and may damage comp transistors, which may Flux control Flux control Flux control method \bigcirc None No flux control ($I_d = 0$) \bigcirc Equation-based Equation-based flux com V Dead-time compense Method \bigcirc None No dead-time compense	cceleration icity ω ₁ , wh tion faster t ation. Failu sonents co pose a risk pose a risk trol with flu sation	In generating que ere $\alpha_n = (T_{fr} - t_{han} - 1.0 \times \alpha_n \text{ may})$ re to manage re- nnected to the D to finjury or pro- x-weakening and	H = H = H = H = H = H = H = H = H = H	back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power
Determines maximum ac minimum operating velo \triangle WARNING: Decelerai energy storage or dissip and may damage comp transistors, which may Flux control Flux control method \bigcirc None No flux control ($I_d = 0$ \bigcirc Equation-based Equation-based flux cont V Dead-time compensa Method \circledast None No dead-time compensa \bigcirc Per-phase	cceleration icity ω ₁ , wh tion faster t ation. Failu ponents co pose a risk trol with flu sation	In generating que ere $\alpha_n = (T_{fr} \cdot han 1.0 \times \alpha_n may re to manage re number of the transformation of transformation of the transformation of tran$	sdrants. This is norm $+ B\omega_1$)/J. regenerate energy generation energy JC link, such as elec perty damage.	back onto the DC link, requiring either may cause excessive DC link voltage ctrolytic capacitors and power

motorBench Customize Parameters 2

Make sure that all parameters are set as shown

• Ensures FOC sensor-less algorithm is set and correctly configured

 Fault detection 			
Undervoltage margin	2	V	= 14.000 V threshold
Sets undervoltage threshold	below minimum ope	erating voltage, by this v	alue
Overvoltage margin	2	V	= 74.000 V threshold
Sets overvoltage threshold at A WARNING: Ensure that Di electrolytic capacitors and por pose a risk of injury or prop voltages, must be done carefi occur due to parasitic inductor	bove maximum oper C link voltage is pre over transistors. Exc perty damage. Incre ully and at your owr ance.	rating voltage, by this va vented from exceeding : essive DC link voltage easing overvoltage thres n risk, taking into accour	lue safe operating area of components such as may damage these components and may hold, to allow operation at higher DC link It high-frequency voltage surges that may
▼ Motor startup			
Note: See sample grap	ph below, whic	h illustrates many	of these startup parameters.
Current Iq0	3 0.1	× I _{max}	= 1.4000 A
Nominal startup current, norr continuous ratings	malized to maximun	n current Imax, where In	nax = minimum of motor and drive
Rampup time t _r	25	× L/R	= 31.250 ms
Determines the current ramp	up time.		
Align time t _{aln}	0	S	
Determines the align time pri	ior to acceleration, v	where applied electrical	angle is held constant.
Min accel time t _{acc}	250	× L/R	= 312.50 ms
Determines the minimum allo	owable acceleration	time, which affects the r	maximum acceleration during startup.
Acceleration rates are determ	nined using motor m	echanical parameters, a	nd can be slower, but not faster than this.
Acceleration α_1	0.15	× α_{max}	= 248.19 RPM/sec
Determines acceleration duri negligible.	ng the second accel	eration phase, where sp	eed is fast enough so that cogging torque is
Acceleration α_0	0.2	× α1	= 49.639 RPM/sec
Determines acceleration duri negligible.	ng the first accelerat	tion phase, where speed	is slow enough so that cogging torque is no
Hold time t _h	0	S	
Determines the hold time after	er acceleration, whe	re applied electrical free	uency is held constant.
Speed threshold ω_0	0.2	$\times \omega_{crit}$	= 106.00 RPM
Determines speed at which a normalized to critical speed o is the back-EMF constant, and	cceleration is increase $\omega_{ m crit}=2\sqrt{1.5N_p I}$ d I_{a0} is the startup of	sed, which is fast enoug $X_{e}I_{q0}/J$, where N_{p} is the current amplitude.	h so that cogging torque is negligible. This is ne number of pole pairs, J is the inertia, K_{ϵ}
-Startup algorithm			
Classic			

Startup algorithm								
Classic								
Synchronizes angle via current ra	mpdown, used in MC	AF R1-R3						
 Weathervane Synchronizes angle via controlled 	d rotation of reference	frame						
Active damping								
Max amplitude I _A 3	0	X I _{max}	= 0.0000 A					
Determines the maximum curren	t amplitude used for a	active damping						
Max gain	40	× I _{max} / ω _{max}	= 430.77 mA/RPM					
Determines the gain from velocity difference (= applied electrical frequency - estimated electrical frequency) to incremental current								
Speed threshold	0.4	× ω ₁	= 120.00 RPM					
Determines minimum speed to e that sets the transition to closed	nable active damping, loop commutation	, normalized to ω ₁ , whicl	h is the minimum operating speed					

Parameter 2 screen continues on next page

motorBench Customize Parameters 2 (continued)

 Vermodulation 		
D-axis limit	1	× V _{DC}
D-axis voltage limit normalized	to DC link voltage. This	s rarely needs to be adjusted
Q-axis limit	1.15	× V _{DC}
Q-axis voltage limit normalized capability.	to DC link voltage. Rep	resents a tradeoff between distortion and output voltage
■ Motion Control API		
Filter time constant τ_{Is}	1	ms
Time constant used for calculati	ng low pass filtered va	lue of ls ²
Filter time constant τ_{Iq}	1	ms
Time constant used for calculati	ng low pass filtered va	lue of lq
▼ Board Service		
Ui service period	1	ms
Rate at which the Board Service	tasks are executed	-
Button debounce time	7	ms
Debounce time: number of ider recognized	tical digital samples re	quired before a change in button state (unpressed/pressed) is
Long button press time	2.5	s
The amount of time in which it	takes to register a long	button press

Advice

Commutation step at maximum motor velocity

 $\theta_c = \omega_{m,\max} N_p T_{PWM} = 0.3120^\circ$

$\theta_c < 30^\circ$	Smooth commutation: more than 12 steps per electrical cycle
$30^{\circ} \le \theta_c < 60^{\circ}$ Slightly better than six-step commutation	
$\theta_c \ge 60^\circ$	Poor commutation: fewer than 6 steps per electrical cycle

Field-oriented control works best when there are at least 12 PWM periods per electrical cycle, so that the resulting waveform minimizes distortion at harmonics of the electrical frequency.

If the step size is small enough (\approx 60 PWM periods per electrical cycle), and the current controllers operate every PWM cycle, they can often compensate for distortion due to PWM dead time. This works very well at low velocity but is less effective at the upper end of the motor's velocity range.

Ripple current at maximum DC link voltage

 $I_R = \frac{V_{DC} T_{PWM}}{12L} = 0.008571 \times I_{max}$

 $I_R < 0.2I_{max}$ Low ripple current (< 1.3% additional I²R loss)

 I_R describes the worst-case peak amplitude of ripple current, which occurs when the three motor phases are switching at some permutation of (0%, 50%, 100%). Ripple current can approach this value at high modulation indices. The RMS value of ripple current is $I_R/\sqrt{3}$.

It can be a concern for low-inductance motors, for three reasons:

- It causes additional I²R dissipation in the motor windings
- It may cause the current sense signal conditioning circuitry to saturate, so that ADC readings of current are lower than their true value. (In center-aligned PWM, if the ADC samples at the pulse center, much of the ripple current component is rejected, but this relies on linearity of the signal conditioning, which is violated if saturation occurs.)
- It may cause hardware overcurrent detection to trip at a lower current, reducing design margin.

The impacts to saturation and hardware overcurrent detection can be minimal if the sensing and detection ranges are expanded to allow for ripple current, but the additional I²R losses are unavoidable. One method of reducing ripple current is to increase the switching frequency, but this also increases the effect of dead-time distortion. Another method is to reduce the DC link voltage, as long as there is enough voltage available to allow the motor to achieve the desired torque and velocity.

Motor Control Application Framework

R6/RC8 (commit 102056, build on 2020 Aug 25 14:43)

GENERATING THE CONTROL FIRMWARE

Generate the Code

- 1. If everything is correct, message Ready to Generate (A) will appear.
- 2. Once all parameters are correctly set:

Setup Compiler and Builder

2. Right click on the active project to

3. Make sure that proper debug tool is

configure the project properties (B)

Categories:

General

PICkit 4

Loading

Uibraries ...

Building

1. Select Projects tab (A)

and set as main project

selected (C)

selected (D)

Make sure the proper

compiler version is

- 3. Generate code by pressing the Generate (B) button.
- 4. Wait for Generation complete (C) message

X MPLAB X IDE v5.45 - sample-mb-33ep256mc506-mclv2 : default File Edit View Navigate Source Refactor Production Debug Team Tools Window Help 5 - 🔝 📅 • 🍞 • 🕨 • 🖳 • 🔂 P P default Projects Files Classes Resource Manageme... × Start Page x Available Resources Tree View Flat View motorBench® Development Generate Import... Export **Project Resources** Easy Setup Libraries A ► LED 🗆 Sł Ready to Generate 😮 🔀 🖵 motorBench ® Development Suite 🗹 Sł SWITCH V E В - Pr Peripherals Configure . 🕜 🔀 🕀 ADC1 С AN 🛞 🔀 🎵 PWM 🕐 🔀 🕚 TMR1 Notifications Output × Notifications [MCC] Pin Manager: Grid View ? X NR2 Project Loading Warning × MP AB® Code Configurator 😮 🔀 📄 UART 11:36:16.690 INFO: c_generated_files\traps.c Suc 11:36:16.690 INFO: m generated_files\traps.h Suc System 11:36:16.690 INFO: mc generated_files\uartl.c Suc Interrupt Module 11:36:16.690 INFO: mc enerated files\uartl.h Suc 11:36:16.690 INFO: mcc nerated_files\watchdog.h Suc Pin Module 11:36:16.795 INFO: **** 11:36:16.796 INFO: Gener ion complete (total time: 15933 milliseconds) 11:36:16.796 INFO 11:36:16.796 INFO-Generation complete X MPLAB X IDE v5.45 - sample-mb-33ep256mc506-mclv2 : default File Edit View Navigate Source Refactor Production Debug Team T Α 5 R default V SRC 7 Projects × Files Classes **Resource Management...** 🕀 💼 Header Files 🗄 \overline Important Files B 🗄 💼 Linker Files 🗄 💼 Resource Files X Project Properties - sample-mb-33ep256mc506-mclv2 × Configuration Family: Device: ---
V File Inclusion/Exclusion All Families \sim dsPIC33EP256MC506 E--- O Conf: [default] Connected Hardware Tool: Supported Debug Header: PICkit 4-SN:BUR211973970 Show All Packs: XC16 (Global Options) dsPIC33E-GM-GP-MC-GU-MU_DFP 👕 1.1.33 С o xc16-gcc 1.3.85 Code Coverage Compiler Toolchair XC 16 nram Files/Microchin/xc16/v1.70/b ASM3 C30 dsPIC D Manage Configurations.. OK Cancel Apply Unlock Help

Setup Debug tool Power option

- 1. Select the **debug tool** (A) (e.g. PICkit4)
- 2. Select Power option category (B)
- 3. Make sure to a check the **Power target circuit** from PICkit4 option (C)

Build and Flash

- 1. Connect the programmer (e.g. PICkit-4) to the EPC9147A as shown
- 2. Press the Make button
- 3. Wait for **BUILD SUCCESSFUL** and for **Programming**/ Verifying complete
- Note: After programming green LED should be on and orange and blue LED's should flash
- 4. Disconnect programmer from EPC9147A

OPERATING THE MOTOR DRIVE SYSTEM

Operate the Motor Drive System

- 1. Connect the EPC9147A to a compatible inverter board; e.g. EPC9146
- 2. Connect the motor to the inverter board. Follow QSG instructions.
- 3. With power **OFF**, connect the power supply to the inverter board. Make sure the 3V3 jumper is installed to power the controller.
- 4. Set the power supply to the correct operating voltage for the inverter board. Make sure the current limit setting is sufficient to operate the motor drive system. For EPC9146 $V_{sup} = 48$ V and $I_{lim} > 2.5$ A
- 5. Power on and operate

For More Information:

Please contact **info@epc-co.com** or your local sales representative

Visit our website: www.epc-co.com

Sign-up to receive EPC updates at **bit.ly/EPCupdates** or text "EPC" to 22828

EPC Products are distributed through Digi-Key. **www.digikey.com**

Demonstration Board Notification

The EPC9147A board is intended for product evaluation purposes only. It is not intended for commercial use nor is it FCC approved for resale. Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Quick Start Guide. Contact an authorized EPC representative with any questions. This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk.

As an evaluation tool, this board is not designed for compliance with the European Union directive on electromagnetic compatibility or any other such directives or regulations. As board builds are at times subject to product availability, it is possible that boards may contain components or assembly materials that are not RoHS compliant. Efficient Power Conversion Corporation (EPC) makes no guarantee that the purchased board is 100% RoHS compliant.

The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this Quick Start Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved.

Disclaimer: EPC reserves the right at any time, without notice, to make changes to any products described herein to improve reliability, function, or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, or other intellectual property whatsoever, nor the rights of others.